

Sample Questions with Answers

Blockchain

Generated on January 20, 2026 at 11:46 AM

Blockchain

[NOTE] Important Note: This PDF contains sample questions with complete answers and explanations. [Visit SolveMyQues.com](https://SolveMyQues.com) for our complete question bank, interactive tests, and detailed performance tracking!

Question 1:

Explain blockchain technology with a simple example of how blocks are connected.

[ANSWER] Answer & Explanation:

Blockchain is a distributed digital ledger that stores data in blocks linked together using cryptographic hashes.
Basic Structure:
Block 1 (Genesis):
- Data: "Alice sends 10 coins to Bob"
- Hash: 0x1a2b3c...
- Previous Hash: 0x000000...
Block 2:
- Data: "Bob sends 5 coins to Charlie"
- Hash: 0x4d5e6f...
- Previous Hash: 0x1a2b3c... (Block 1 hash)
Key Properties:
• **Immutable** - Changing any block breaks the chain
• **Decentralized** - No single point of control
• **Transparent** - All transactions are visible
• **Secure** - Cryptographically protected
Simple Example:
Imagine a notebook shared among friends where:
- Each page (block) contains transaction records
- Every page references the previous page number (hash)
- If someone tries to modify an old page, everyone notices because the page numbers do not match
- Everyone has a copy, so no single person can cheat
This creates an unbreakable chain of records that everyone can trust without needing a central authority.

Question 2:

Explain cryptocurrency and its key differences from traditional digital payments.

[ANSWER] Answer & Explanation:

Cryptocurrency is digital money that uses cryptography for security and operates on blockchain networks without central authority.
Traditional Digital Money (Bank Transfer): Alice → Bank → Bob - Bank verifies Alice has \$100 - Bank deducts \$100 from Alice - Bank adds \$100 to Bob - Bank maintains central ledger
Cryptocurrency Transaction: Alice → Blockchain Network → Bob - Alice signs transaction with private key - Network nodes verify signature and balance - Transaction added to blockchain - No central authority needed
Key Differences:
Aspect	Traditional Digital	Cryptocurrency
Control | Central bank/authority | Decentralized network | Verification | Bank validates | Network consensus | Reversibility | Can be reversed | Irreversible | Privacy | Bank knows all details | Pseudonymous | Availability | Business hours | 24/7/365 | Borders | Geographic restrictions | Global | Fees | Bank fees | Network fees
Example Cryptocurrencies:
Bitcoin (BTC) - Digital gold, store of value
Ethereum (ETH) - Smart contract platform
Litecoin (LTC) - Faster Bitcoin alternative
Benefits: No intermediaries, global access, programmable money, censorship resistance

Question 3:

Explain the process of creating and verifying digital signatures with an example.

[ANSWER] Answer & Explanation:

Digital signatures use public-key cryptography to prove transaction authenticity without revealing private keys.
Key Generation Process:
1. Generate random private key (256-bit number)
Private Key: $d = 0x1234567890abcdef...$
2. Calculate public key using elliptic curve
Public Key: $Q = d \times G$ (where G is generator point)
 $Q = (x, y)$ coordinates on curve
3. Create wallet address from public key
Address = Hash(Public Key)
Transaction Signing Process:
Step 1: Create transaction
 $tx = \{ \text{from: "1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa"}, \text{to: "1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2"}, \text{amount: 0.5}, \text{fee: 0.001} \}$
Step 2: Hash transaction data
 $txHash = \text{SHA256}(tx) = 0xabc123...$
Step 3: Sign with private key
 $\text{signature} = \text{sign}(txHash, privateKey)$
Step 4: Broadcast transaction + signature
Verification Process:
Step 1: Receive transaction + signature
Step 2: Hash transaction data
Step 3: Verify signature using public key
 $\text{if} (\text{verify}(\text{signature}, \text{txHash}, \text{publicKey}) == \text{true}) \{ \text{transaction_valid} = \text{true} \} \text{else} \{ \text{transaction_invalid} = \text{true} \}$
Security Properties:
Authentication - Proves sender identity
Non-repudiation - Sender cannot deny signing
Integrity - Detects any data tampering
Unforgeable - Cannot create valid signature without private key
Real-world Analogy: Like a handwritten signature, but mathematically impossible to forge and can be verified by anyone.

Question 4:

Explain how blockchain wallets work and the difference between hot and cold wallets.

[ANSWER] Answer & Explanation:

A blockchain wallet does not actually store cryptocurrency - it stores private keys that control access to funds on the blockchain.
How Wallets Work:
Wallet Components:
Private Keys (secret, never shared)
Public Keys (derived from private keys)
Addresses (derived from public keys)
Transaction History (queried from blockchain)
Example:
Private Key: 5KJvsngHeMpm884wtkJNzQGaCErkhHJBGFsvd3Vyk5qMZxj3hS
Public Key:
04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c
1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2
Wallet Types:
1. Hot Wallets (Connected to Internet):
Web Wallets - MetaMask, MyEtherWallet
Mobile Apps - Trust Wallet, Coinbase Wallet
Desktop Software - Electrum, Exodus
Advantages - Convenient, easy to use
Disadvantages - Vulnerable to hacking
2. Cold Wallets (Offline Storage):
Hardware Wallets - Ledger, Trezor
Paper Wallets - Private keys printed on paper
Air-gapped Computers - Never connected to internet
Advantages - Maximum security
Disadvantages - Less convenient for frequent use
Seed Phrase Example:
Mnemonic (12-24 words):
"abandon ability able about above absent absorb abstract absurd abuse access accident"
This generates:
- Master Private Key
- Hierarchical Deterministic (HD) wallet structure
- Multiple addresses from single seed
Security Best Practices:
Never share private keys or seed phrases
Use hardware wallets for large amounts
Keep multiple backups in secure locations
Verify addresses before sending transactions
Use strong passwords and 2FA
Important: "Not your keys, not your coins" - only control funds if you control private keys.

Question 5:

Explain the mining process with a practical example of how miners compete to add blocks.

[ANSWER] Answer & Explanation:

Mining is the process where computers compete to solve mathematical puzzles to validate transactions and secure the blockchain network.\n\n**Mining Process Step-by-Step:**\n\n**Step 1: Collect Transactions**\nMempool (pending transactions):\n- Alice: 2 BTC\n- Charlie: 1.5 BTC\n- Eve: 0.8 BTC\n- Total fees: 0.05 BTC\n\n**Step 2: Create Block Header**\nBlock Header:\n- "previousHash": "0000a1b2c3d4e5f6...",\n- "merkleRoot": "abc123def456...",\n- "timestamp": 1640995200,\n- "difficulty": "00000000000000000000000000000001a...",\n- "nonce": 0\n\n**Step 3: Mining Competition**\nTarget: Hash must start with 19 zeros\nMiners try different nonce values:\n- Miner A tries nonce = 1: $\text{SHA256}(\text{blockHeader}) = 1a2b3c4d...$? (does not start with enough zeros)\n- Miner A tries nonce = 2: $\text{SHA256}(\text{blockHeader}) = 9f8e7d6c...$?\n- Miner B tries nonce = 1,847,293: $\text{SHA256}(\text{blockHeader}) = 00000000000000000001abc...$? WINNER!\n\n**Step 4: Broadcast Solution**\nWinning miner broadcasts:\n- Valid block with correct nonce\n- Network verifies solution\n- Block added to blockchain\n- Miner receives reward: 6.25 BTC + 0.05 BTC fees\n\n**Why Mining is Necessary:**\n- Security: Makes network attack expensive (need 51% of computing power)\n- Cost to attack > potential profit\n- Decentralization: No central authority decides which transactions are valid\n- Distributed consensus through competition\n- Incentivization: Miners earn rewards for maintaining network\n- Economic incentive ensures network operation\n- Fair Distribution: New coins distributed through work, not favoritism\n- Anyone can participate with computing power\n\n**Mining Difficulty Adjustment:**\nEvery 2016 blocks (~2 weeks):\n- if (actual_time > 2_weeks) {\n increase_difficulty() // blocks found too fast\n}\n- else if (actual_time < 2_weeks) {\n decrease_difficulty() // blocks found too slow\n}\n\n**Energy Consumption Trade-off:**\nHigh energy use = High security. The electricity cost makes attacks economically unfeasible.

[FEATURES] Want More Questions & Features?

Visit [SolveMyQues.com](https://www.solvemyques.com) for:

- [+] Complete question bank with detailed answers & explanations
- [+] Interactive skill assessment tests with instant results
- [+] Performance tracking and personalized recommendations
- [+] Achievement certificates and progress reports
- [+] Expert explanations and step-by-step solutions
- [+] Ask questions to our expert team
- [+] Daily challenges and leaderboards

[WEB] Website: www.solvemyques.com

[EMAIL] Email: support@solvemyques.com

SolvemyQues